

Part I

Business Intelligence (BI), OLAP

and the Data Warehouse

David Gross-Amblard
(original slides and documents: Marc Bousse)
ISTIC- Rennes 1 University
V2.1

Summary

- Motivation: why traditional databases are not sufficient for BI
- One approach: OLAP
- Model for OLAP, and implementation
- One example: Business Objects (BO)
- Keywords: OLAP, ROLAP, MOLAP, key, measure, hierarchy, acyclic graphs, grain, (data)cube, slicing, dicing, roll-up, drill down, ...

Program

- 3 readings (CM): live for now
- 1 exercise session (TD)
- 3 labs (TP) on Business Object and/or PowerBI

Outline

Chapter 1: "*why*" business intelligence (BI)

Chapter 2: "what": multidimensional modeling

Chapter 3: "how": architecture of a BI system

Use case: BI for a driving school

Bibliography

- Building the Data Warehouse. Bill Inmon. Wiley, 1992.
- The Data Warehouse Toolkit. Ralph Kimball. Wiley, 1996
(see <https://www.kimballgroup.com>)
- Database systems, The Complete Book (2nd edition).
Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom.
Pearson International Edition, 2009 (chap. 10)
- In French:
 - The decision support project. Stakes, models,
architectures of the Data Warehouse. Jean-Marie
Gouarné. Eyrolles, 1997 La construction du
datawarehouse. Jean-François Goglin. Hermes, 1998.

Chapter 1

Business intelligence

- Chapter Outline
 - Why business intelligence
 - Why more than a DBMS
 - Historical development
 - Keywords: *Business Intelligence*, OLAP, multidimensional approaches, *Data Warehouse*, *Data Mart*

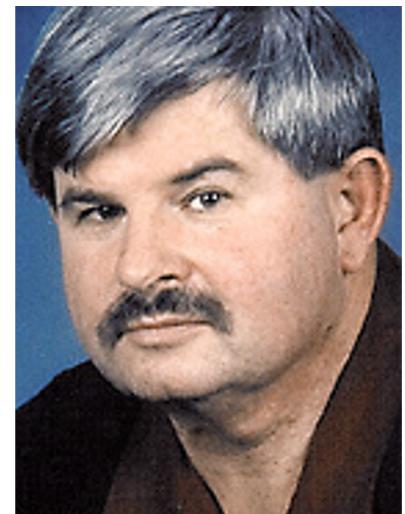
Business Intelligence

- Intelligence as in " Central Intelligence Agency " (not as intelligence / wit, in French)
- Data analysis of business information
 - Data management as a basis
 - Reporting
 - OLAP
 - Data sciences
 - Data mining
 - From data to processes (workflows)

Business Intelligence: motivation

- Before 80's
 - Data management dedicated to production monitoring
 - Event triggering (launch machines)
 - Amount of production
- After 80's
 - Any reasonable company has a proper production system
 - Remaining advantage: strategic insights
 - Requires precise information on the company (past) and its environment (customers, competitors): intelligence

Information for right decisions


- Good information is required:
 - *Precise, but not exhaustive*
 - *Correct, but accuracy is not mandatory*
- Information is not data
- Example
 - *A company want to understand its internal travelling costs*
 - *Data: all details about plane tickets, hostel bookings, buses: precise, exhaustive, accurate, but useless*
 - *information: evolution of the average of travel costs, per month and company departments: precise, correct, not exhaustive, useful*
 - "A valid data is not necessarily a useful information

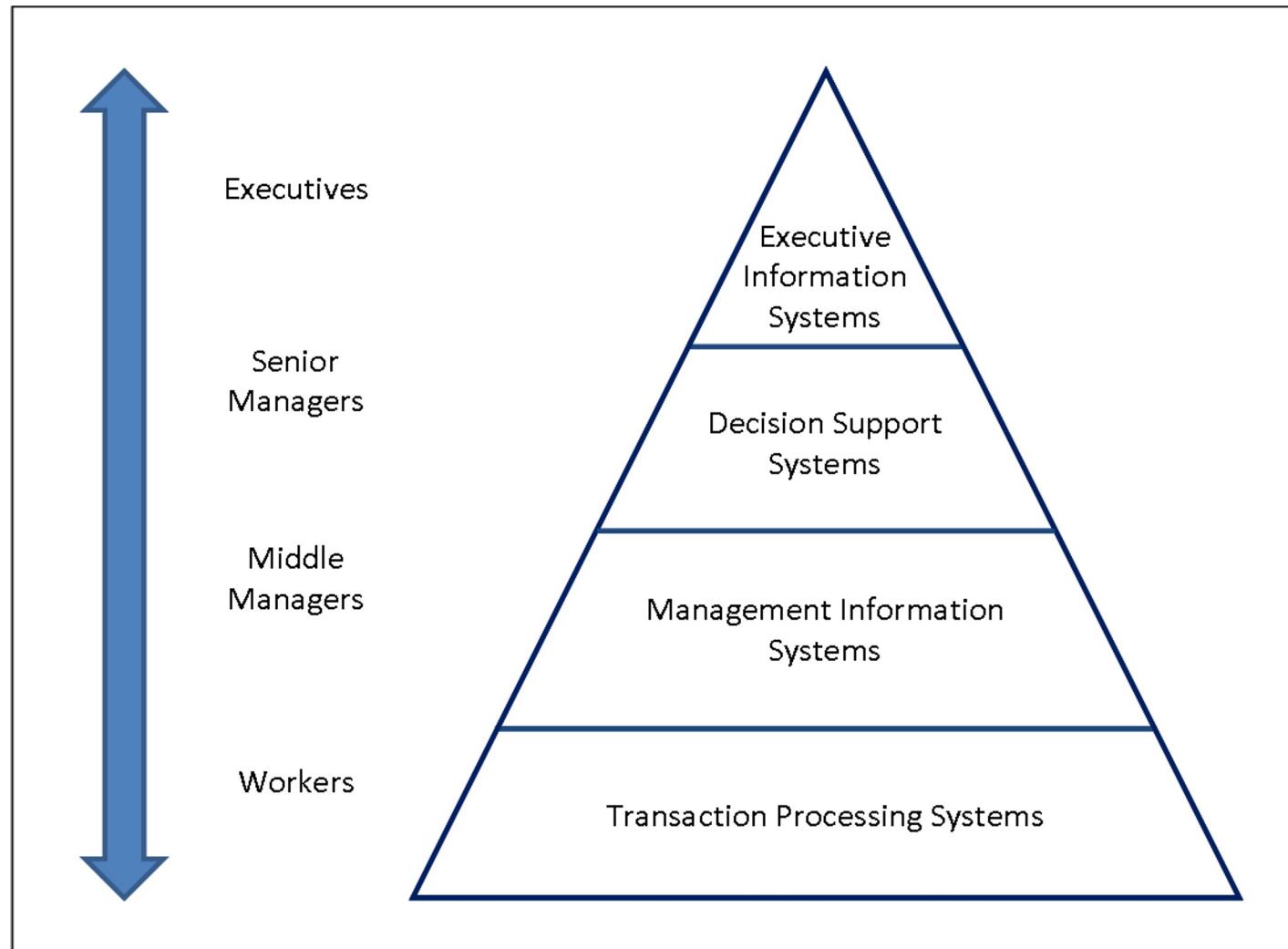
Characterize Useful Information

- Quoting Bill Inmon:
 - Has a meaning for the decision maker
 - Is thematic (related to a precise topic)
 - Is integrated (same format whatever the source)
 - Is curated (filtered, cleaned)
 - Is persistent (do not forget the past)
 - Has a precise timestamp
 - Is accessible to the decision maker (GUI)

Bill Inmon

- Coined the notion of a data warehouse (*entrepôt de données* in French)
- Book: Building the Data Warehouse. Bill Inmon (1992). Wiley.

1991, © The ComputerWorld


Core Data Management Systems: pros

- Very efficient for operational aspects
 - OLTP (on-line transactional processing)
 - Fine data modelling
 - Transaction management
 - Rich query language
 - Optimization

Core Data Management systems: cons

- Specialized systems, with different versions on different sites (ex. Mysql on one, Postgres on another)
- Not dedicated to Decisional Information
- Technical difficulties
 - Heterogeneous equipment
 - Technical interfaces
 - Complex database schemas
 - No data versioning / timestamping by default
- Conceptual difficulties (intelligence)
 - Dedicated for developers, not decision makers

Better: Layers of Information Systems

(source Wikipedia)

Goals of the decision information / support system

- Provide useful information, without technical details
- Information definition and modeling for the final user (decision maker)
- Persistent information storage (no deletion)
 - Measure of activity
 - In a precise context
- Persistent information storage (no deletion)
 - Data presentation for any combination of context
 - Natural user interface

Example

- A quality manager wants to understand the amount of defective part in a product for the current year
 - Measure: number of defective parts
 - Context: month, day, factory, ..
 - Combination of context:
 - average number of defective parts for a specific factory, for January
 - Navigational interface
 - Change of factory, zoom out on full year, ...

Decisional information systems (DIS)

- **(Decision support systems, DSS)**
- "Decisional information systems are data management systems dedicated to the monitoring of (business) activities, to assist decision making. They provide a synthetic view of operational information, and use specific data modeling and storage methods (data warehouse, OLAP databases). They offer a global view of an activity (company), integrating all its dimensions.

The construction of the datawarehouse. Jean-François Goglin (1998). Hermes

DIS evolution

- 70-80: reporting systems
 - Direct querying of the operational database
 - No autonomy
- 80's : datacenters
 - Extraction of data from several operational databases
 - Centralization in one unique infrastructure
 - Dedicated database
 - Data gathering, but no integration
 - First common referential
 - Better user interfaces
- 90's: OLAP model and databases
- 2000's: Cloud version (SAAS, DAAS)
- 2010's: From data analytics to machine learning
- 2020: AI

OLAP

- Very common building block
- = On-Line *Analytical* Processing (Codd , 1995)
(≠ OLTP = On-Line *Transactional* Processing)
- DIS based on a *Data Warehouse*
- (*Bill Inmon*): "*A data warehouse is a collection of information which is thematic, integrated, persistent and timestamped, organized to assist decision making*".
- Production or operational database: set of sources that will feed the data warehouse

Data Warehouse

- 4-infrastructure phases
 - **Data collect** (from operational databases)
 - **Data integration** (in a single database)
 - **Data diffusion** (according to a multidimensional model)
 - **Data presentation** (for final users)

Usage

- **Reporting:** production, diffusion and customization of static decisional information
- **Dynamic analysis (OLAP / *analytical processing* / *analytics*):** interactive multidimensional exploration of information
- **Data Sciences:** finding interesting patterns, laws, in information
 - Numerically, symbolically
 - Typical example: correlation between baby diaper sales and beer on football events

Ralph Kimball

- Methodology for multidimensional information modeling
- Co-founder of RedBricks systems (DBMS optimized for multidimensional querying) / Informix / IBM
- Classic book: The Data Warehouse Toolkit. Ralph Kimball (1996). Wiley.

Chapter 2

The multidimensional model

- At the basis of OLAP DIS:
 - Storage model
 - Information presentation model
 - For the decision maker
- Principle: store and query information as **measures** in a given **context**
- **Three characteristics:**
 - measures **indexed by keys** (=/= primary keys)
 - Indexing with several keys: **dimensions**
 - **Measure aggregation** (sum, mean, ...)
- **Multidimensional modeling:**
 - **Find the measures, find the keys, find the dimensions**

What is a measure

- We want to measure activity (sales, production, ...)
Measure : numerical value
- Example for a driving school:
 - Number of lessons = 750
 - Number of teaching hours = 30 558
 - Number of driving test attempts = 750
 - Success rate= 56%.
- Problem: no context for these measures (when, where, who, ...)

Indexing measures: keys

- Example: adding the year information
 - **4748 teaching hours in year 2020**
 - **The measure value 4748** *is now indexed by the key value 2020*
 - Globally: the Teaching hours **measure** is indexed by the **Year key**

Year	Teaching hours
2009	3966
2010	4748
2011	18379

Definitions

- **Key:** non-empty set of values called members or elements
 - (not exactly the keys of the relational model)
- **Measure** (synonym: **fact**)
 - = map a number to each key value
- Keys index measures: each key value sets one and only one measure value
- This mapping is a function
 - Teaching hours is a function of the Year
 - Teaching hours = f (Year)

Indexing with several keys

- Several keys can be mandatory to precisely index a measure
- Examples:
 - Teaching hours = f (Year, Monitor)

	2009	2010	2011	2012
Sophie	123	543	604	112
Julia	429	765	352	222
Tsering	286	221	642	643
Georg	523	33	112	232
Anette	123	965	1650	0

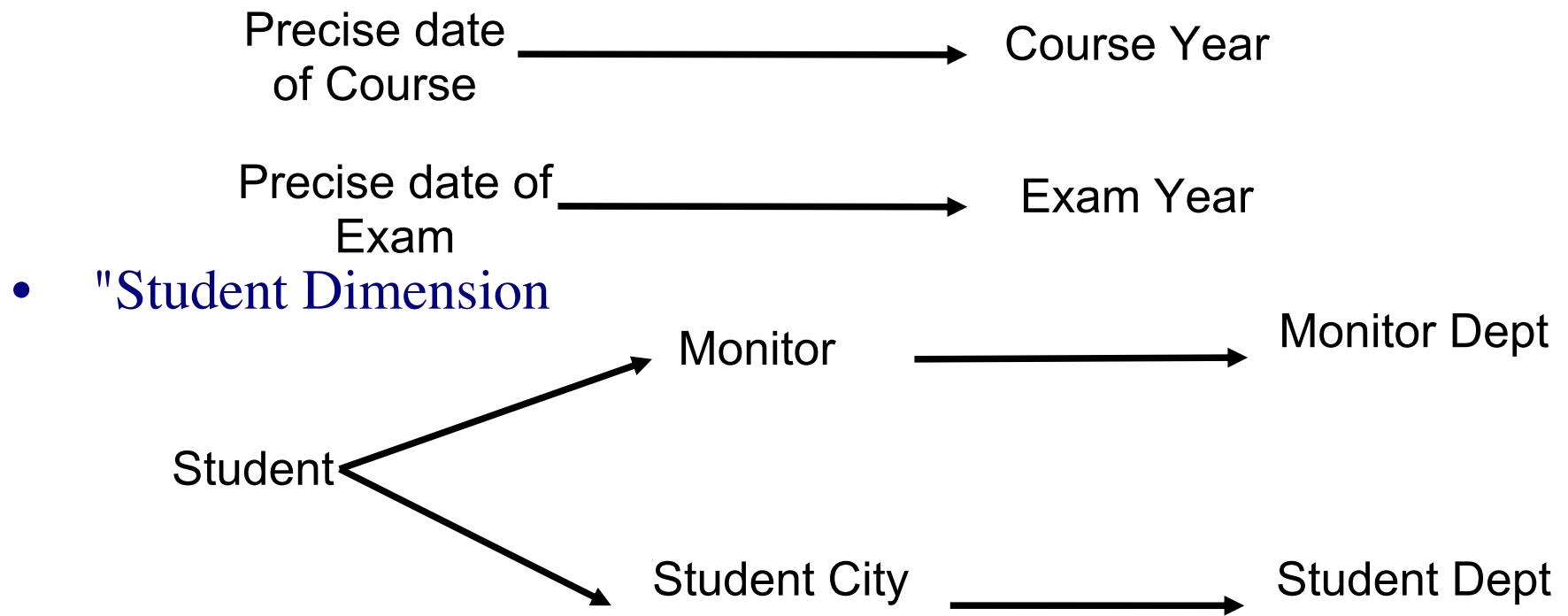
Measure arity

- Arity: nb of required keys
 - Binary measure: Teaching hours = $f(\text{Year}, \text{Monitor})$
 - Ternary-measure:
 $\text{Teaching hours} = f(\text{Year}, \text{Monitor}, \text{Car})$
 - N-ary measure: n keys
- In practice
 - A key may correspond to a primary key in a database
 - Or can be constructed from these existing keys (concatenation,...)
 - Or can be forged for convenience

Dependencies between keys

- Keys may have relationships

Monitor	Monitor Dept.	Year	Hours
Sophia	35	2010	123
Sophia	35	2011	442
John	68	2010	445
John	68	2011	762


- Keys (values) may depend on each other
- Clearly, Dept is defined by the Monitor (the Monitor lives in one unique department)
- Notation: Monitor \rightarrow Monitor Dept
- \rightarrow is the functional dependency bw. keys

Key independance rule

- Rule: keys indexing a measure must be functionnaly independent
- Values of Monitor are the most discriminant
- Values of (Monitor,Monitor Dept) are more informative
- But what to do with dependent keys ?

Notion of Dimension

- A set of keys that are functionally dependent from a dependency graph called a dimension
 - Two temporal dimensions for Course and Exam

- Rule: no dependency between two dimensions !
- (maximally connected components)

Properties of dimensions

- The graph of a dimension is acyclic
- Grain size:
 - Unique source of the graph
 - Also called atomic key or atomic level
 - Grain of the Course dimension: Precise date of course
 - Grain of the Student dimension: Student (key)
 - Each branch of the dimension is called a *hierarchy*
 - A unique hierarchy in the Course dimension
 - Precise date of Course → Course Year
 - Two hierachies in the Student dimension
 - Student → Monitor → Monitor Dept
 - Student → student city → Student Dept

Key aggregation

- Any key of a hierarchy represents (aggregates) any key of its underlying level
 - The dependency Monitor → Monitor Dept allows to aggregate Monitors by their departments (as each monitor has a precise Dept)
 - The dependency Student → Monitor allows to aggregate Students by their Monitors

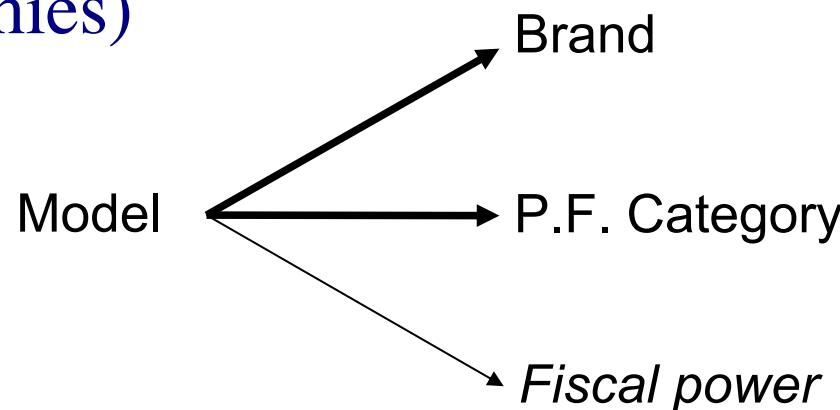
Moniteur	Dépt.
Maillet Sophie	35
Meursault Antoine	35
Meyer Julie	22
Moreau François	53
Moreau Julie	35
Morel Gérard	35

Elève	Moniteur
Eberhard Adeline	Meursault Antoine
Eveillard Eric	Meursault Antoine
Eveillard Léon	Meursault Antoine
Eluard Sophie	Moreau François
Eugène Jacques	Moreau François
Eveillard Paulette	Moreau François

Key aggregation

- Aggregation is transitive:
 - Student → Monitor Dept
 - But also: Student → Student Dept
 - To avoid confusion, we used two different notions (keys) for Dept (even if departments are the same)
- Complete aggregation: we consider a default key named " all X ", that allows to aggregate all keys of a dimension:

Student → Monitor → Monitor Dept → All Students


 - Student → Student area → Student Dept → All Students
- Note: Some functional dependencies are useless
 - Indeed, for cars: Serial Number → Initial traffic realease
 - But do you really want to aggregate cars by their initial traffic release...?

Information Attributes

- keys = discriminating information
- **Information attributes**
 - = secondary information
 - each depend on a key
 - do not allow for significant aggregation (thus absent from hierarchies)
 - provide additional information
- Examples:
 - fiscal power of a car model
 - date of birth of a student
 - name of the department in clear (already identified by its number)

Interval type key

- How do you use information such as *fiscal power* in a hierarchy?
- Solution: define a new key whose values are *intervals*
- Example: *P.F. category* key. category key, with the values: 1-5 CV; 6-8 CV; 9-11 CV; etc.
- Resulting graph :
(2 hierarchies)

Dimensions and measurements

- The aggregation of the keys multiplies the possibilities of indexing the measures:
 - no. of hours = $f(\text{course week, student department, model})$
 - no. of hours = $f(\text{current year, community, P.F. category})$
 - ... more than 250 possibilities in total for this measure!
- Let's generalize this notion: a measure is a function of N dimensions composed of hierarchical keys
 - dimensions of the driving school case: date of course, time of course, vehicle, test date, inspector, vehicle model
 - measures :
 - pass rate = $f(\text{exam date, student, vehicle model, inspector})$
 - no. of hours = $f(\text{course date, student, vehicle, time})$
 - no. of classes = $f(\text{class date, student, vehicle, time})$

Aggregation of measurements

- The aggregation of the *keys* allows the aggregation of the *measures*:
 - (1) number of hours = $f(\text{course year, monitor})$
 - (2) number of hours = $f(\text{course year, monitor dept.})$

		1999	2000	2001	2002
22	Meyer Julie	1112 h	990 h	5227 h	1193 h
	<i>Somme par dépt :</i>	1112 h	990 h	5227 h	1193 h
35	Maillet Sophie	1433 h	1797 h	7270 h	1112 h
	Meursault Antoine	429 h	388 h	1450 h	381 h
	Moreau Julie	183 h	74 h	626 h	255 h
	Morel Gérard	523 h	836 h	1991 h	309 h
	<i>Somme par dépt :</i>	2568 h	3095 h	11337 h	2057 h
53	Moreau François	286 h	663 h	1815 h	245 h
	<i>Somme par dépt :</i>	286 h	663 h	1815 h	245 h

(2)

We obtain the values of (2) by aggregating the values of (1) according to the aggregation of the monitors by (1) department

Aggregation of measures (continued)

- To "neutralize" a dimension, we aggregate on the key " ensemble " :
(3) number of hours = $f(\text{course year, instructor})$
(4) number of hours = $f(\text{course year, student group})$

	1999	2000	2001	2002
Maillet Sophie	1433 h	1797 h	7270 h	1112 h
Meursault Antoine	429 h	388 h	1450 h	381 h
Meyer Julie	1112 h	990 h	5227 h	1193 h
Moreau François	286 h	663 h	1815 h	245 h
Moreau Julie	183 h	74 h	626 h	255 h
Morel Gérard	523 h	836 h	1991 h	309 h
Somme:	3966 h	4748 h	18379 h	3495 h

We obtain the values of (4) are obtained by adding the values of (3) over each year

(4)

(3)

Notion of an OLAP query

- We call a **query** the application of a measure to a set of keys:
 - one and only one key per measurement dimension.
Example: *Number of hours per year, student and vehicle*
= no. of hours (year, student name+first name, vehicle)
 - a **ALL** key is used to "neutralize" a dimension. Example:
no. of hours per year and student, whatever the vehicle
= no. of hours (year, student name+first name, ALL vehicle)
...or simply :
= nb. of hours (year, student name+first name)
 - a query is said to be *atomic* if each dimension is represented by its unique atomic key. Example:
nb. of hours (week+year, student name+first name, immatr.)

Query computation

- **Case 1: Atomic query.** The corresponding measurement values must be stored in memory
 - example :
no. of hours (week+year, student name+first name, immatr.)
 - these measurement values are called *atomic*
- **Case 2: non-atomic query**
Each non-atomic key value defines a subset of atomic keys
Example: nb. of hours (2001, Eberhard Josette, 987ADD35)
is the sum of the values :
nb. of hours (week+year, Eberhard Josette, 987ADD35)
... of the weeks belonging to the year 2001

Aggregation function

- We have identified the atomic values to be aggregated
It remains to define an *aggregation function* to obtain the non-atomic values.
- Most used aggregation functions:
 - **sum**
Back to the previous example :
no. of hours (2001, Eberhard Josette, 987ADD35)
 $= \Sigma$ (no. of hours (week+year, Eberhard Josette, 987ADD35))
... for any week+year value belonging to 2001
 - **average**
 - **median**
 - **minimum/maximum**

Measure consistency

- Measure consistency: meaningful computation for any query
 - Examples of *consistent* measures:
 - Aggregated sales turnover (CA in FR) = sum of the turnover of the elementary tuples of the aggregate (*month with days, country with customers, etc.*)
 - minimum temperature of the region = minimum of the minimum temperatures of the areas in the region
 - Examples of *inconsistent* measures:
 - national unemployment rate = average of regional unemployment rates
 - => inconsistent, must be weighted by population
 - sum of the total number of workers over N years (*non-additivity*)
 - => inconsistent: must focus on newcomers each year

Computed measures

- Problem: the success rate is in fact the ratio of the number of successes to the number of attempts
- We must therefore define a new measure of *success* (*which is not available in the DW*):
 - same keys as the *success rate* and *number of attempts* measures
 - same aggregation function as *nb. attempts*: sum
 - Definition of *success rate*: ratio of the *number of successes* to the *number of attempts*, for the same set of keys
 - This measure is therefore **computed** from other measure, hence a *computation function*

Computed measures and aggregation

- Four possible situations for a measure:

	atomic	non-atomic
primary	1. memory	2. aggregation
computed	3. computation	4. aggregation then computation

- type 1 = value stored in memory
- type 2 = aggregation function (type 1 measure)
- type 3 = computation function (type 1 and 3 measurements)
- type 4 = aggregation then computation function (type 2 and 4 measures)

Computations and aggregations (continued)

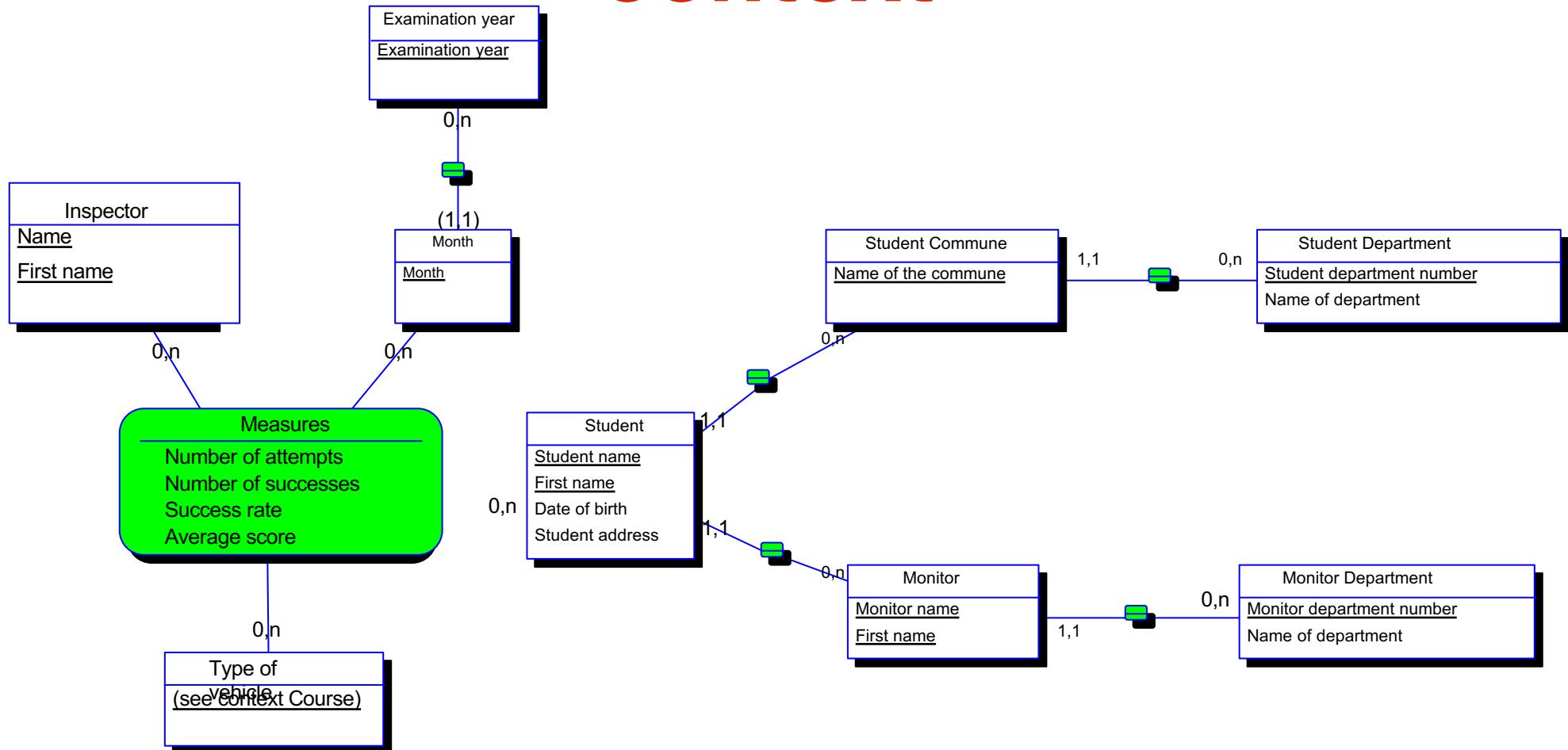
- Back to the *success rate example*:
 - type 1 = *number of successes* (or *number of attempts*) applied to the atomic keys of each dimension
 - type 2 = *number of successes* (or *number of attempts*) aggregated by inspector, year, student, monitor
 - type 3 = *number of successes* (type 1)
/ *number of attempts* (type 1)
 - type 4 = *number of successes* (type 2)
/ *number of attempts* (type 2)
- Order of priority for type 4 :
Aggregation *then* computation

Context (cube)

- Consider measures indexed with the same dimensions:
 - No. of hours **and** No. of lessons **are indexed by the dimensions** (course date, student, vehicle, time)
 - number of attempts, success rate **and** average score **are indexed by dimensions** (exam date, student, vehicle model, inspector)
- A set of measures that share the same keys (and therefore dimensions) is called a *context*
 - **cube** context: three dimensions
 - **hypercube** context: more than 3 dimensions (4 to 10 typically)

Modeling with a CDM

- A multidimensional model can be represented by a CDM (Conceptual Data Model, FR- MCD)
 - key = *identifying property of an entity* of the CDM
 - several identifying properties if the key is composed
 - information attribute = *non-identifying property* of the attachment key entity
 - hierarchical link $A \rightarrow B$ between keys = *binary association* linking the entities concerned $A : (1,1)-(0,n):B$
 - context = CDM *association*
 - number of dimensions = number of links in the association
 - target of each link = grain (atomic key) of one dimension
 - cardinality of each link = $0,n$
 - measure = *property* of such an association


CDM of the driving school case

- *Student dimension*
 - Two hierarchies of five keys = five entities
 - name+first name student → name+first name instructor → Dept.
= entities *Student*, *Instructor* and *Instructor Dept.*
 - student surname+first name → student municipality name → student dept. no.
= entities *Student*, *Student Commune* and *Student Dept.*
 - The *Student* entity has an identifier composed of the properties *Student Name* and *Student First Name*
 - the *Monitor* ID is a combination of *Last name* and *First name*
 - the hierarchical relations between entities follow the FDs (symbol →)
 - Information Attributes :
 - name+first name student → student address: the address is thus a non-identifying property of the *Student* entity
 - same for *date of birth student*

CDM of the driving school case (continued)


- Dimension *Date of examination*
 - Single hierarchy: Month+exam year → exam year
 - entity *Month* made up of the identifying properties *Month No.* and *Year Examination*
 - entity *Year review* formed property *year review*
 - hierarchical binary association
 - cardinality of *1..1 on the Month side*
 - link identifier: *year exam* participates in the *Month* identifier
 - *Review context* = association linking the 2 dimensions
 - links with the entities *Exam Month* and *Student* (atomic keys)
 - properties = measures *No. of attempts*, *success rate* and *average score*

MCD of the "examination" context

- the *vehicle type* dimension is similar to that of the *course* context, but with a "bigger" grain
- the *Inspector* entity is new

MCD of the context "driving course" context

- the *Student* dimension is the same as in the *Exam* context
- the entities *Time* and *Vehicle(m)* and *Vehicle Age* are new

Moving/Permanent Entities

- *Permanent* entity = timeless keys that cannot be modified (unless there is an error)
 - example : $VEHICLE(P)$ = *Serial number, registration date*
- *Moving* entity = "photography », valid for a limited time
 - keys whose value is variable over time
 - keys to identify and/or date the photo
 - 1 to N occurrences of (M) for one occurrence of (P)
 - measures indexed by (M) and not by (P)
 - example : $VEHICLE(M)$ = *Registration, Km meter, Version start date*

Design steps for a multidimensional model

- Identify objectives and available data
- Identify measures :
 - the measures expressed in the *objectives*
 - the measures expressed in typical queries
- Identify the keys:
 - define one entity per key
 - organize entities within the dimensions
 - add information attributes to entities
- Defining contexts: grouping measures of the same dimensions

Measure/key comparison

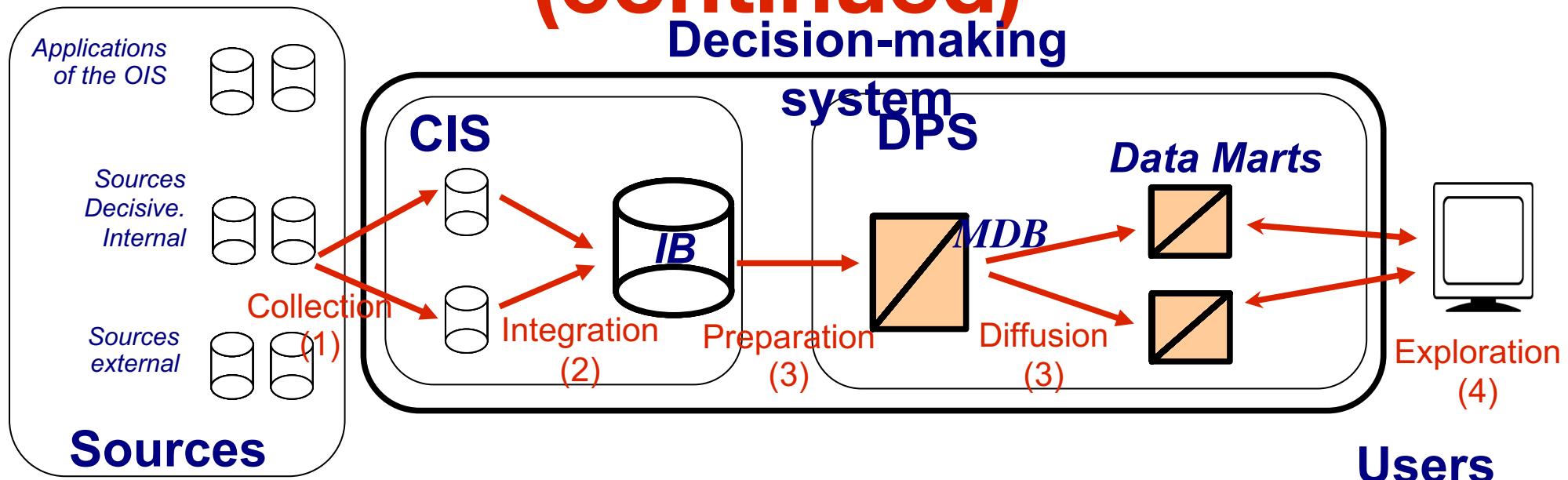
How to distinguish measures from keys?

Measures are :

- always digital
- time-varying
- for different combinations of keys
(*no. of lessons* relative to *commune*, or to *year+monitor*, etc.)
- always cumulative by aggregation function(s)

Key values are :

- numerical or textual
- either invariant or linked to moving entities
(*name, address, age*, etc.)
- related to at most one other key
(*vehicle age* depends only on *registration*)
- never cumulative
(*vehicle age* is not cumulative)


Chapter 3

Architecture of the DIS

- Objective: to create the multidimensional model from the data of the OIS (Operational Information System)
- At the heart of DIS: an integration base (IB)
 - two steps *upstream of* IB :
 1. **collection** and filtering of data from the OIS applications
 2. harmonization and integration into the IB
 - two steps *downstream of* the IB :
 3. preparation and **dissemination of** multidimensional data
 4. interactive **presentation** to the user (decision maker)
 - These steps will be presented in reverse order

Architecture of the DIS (continued)

Decision-making

- Two subsystems :
 - **CIS = Collection (1) and Integration (2) System**
 - **DPS = Diffusion System (3) and Presentation System (4)**
- Interface between the two: the **Integration Base (IB)**
- **IB = the data warehouse** according to most authors!

Two bases, two models

- **MDB** (*Database*) = multidimensional database
 - composed of *Data Marts*, reconstituted from the IB
 - native multi-dimensional format: ***M-OLAP***
(*Cognos, Oracle OLAP,...*)
 - ...or Denormalized Relational Format: ***R-OLAP***
(*Mondrian/Pentaho, B.O.*)
- **IB** (*Integration Base*) = DW
 - provides the data set of regular updates from previously cleaned, harmonized and historicized data
 - unique "memory" of the company (never *delete!*)
 - ... hence a classical, *normalized* relational model

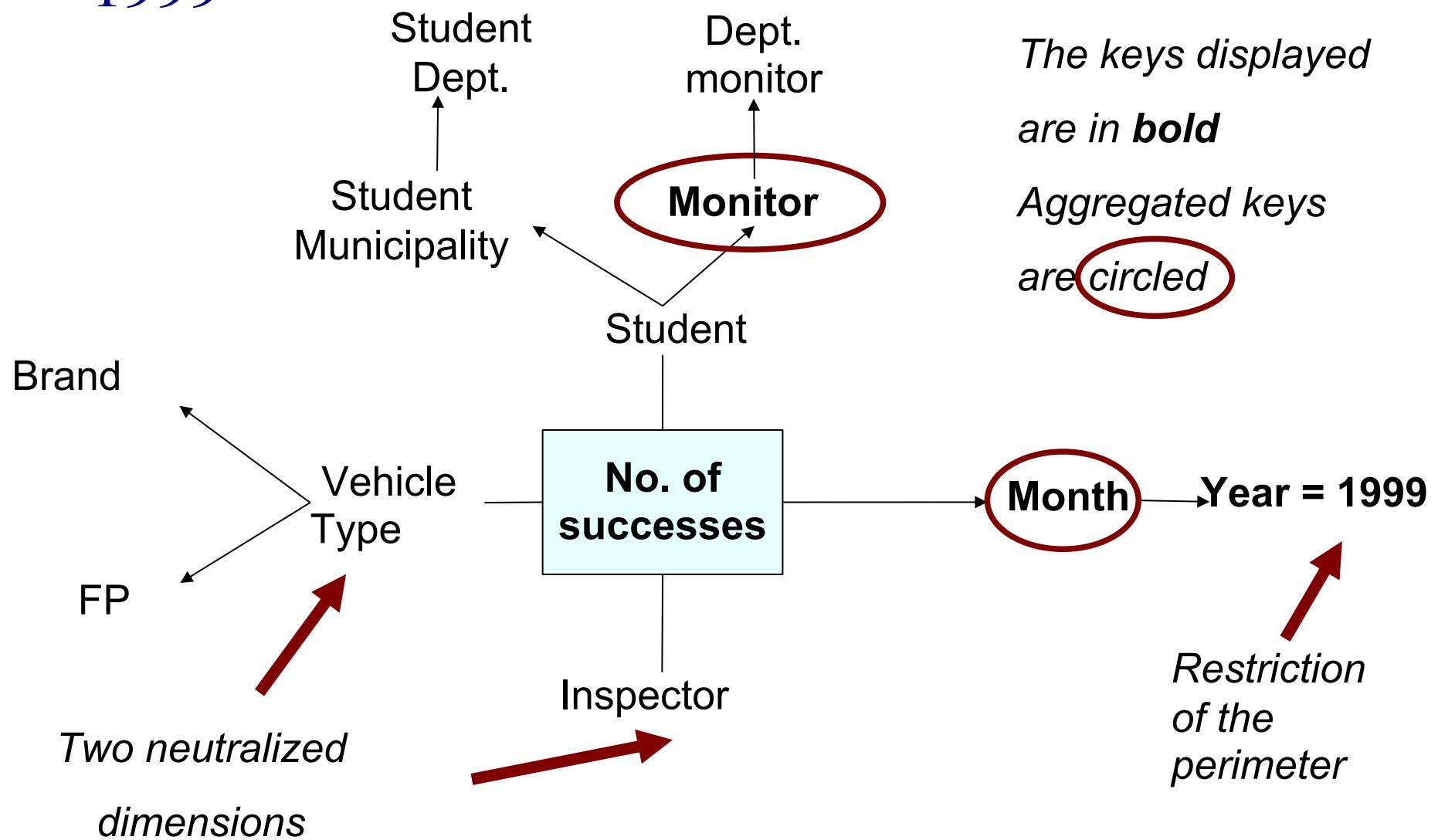
Architecture of the driving school case

- Integration database = data warehouse
 - Realized by a *normalized* relational database
 - Classical CDM
 - PDM and loading scripts (SQL)
- Broadcasting Base = "Data Mart".
 - Realized by a *denormalized* relational database
 - Multidimensional CDM (see Chapter 2)
 - Denormalized PDM
 - fed from IB (SQL, scripts)

Step 4: Presentation

- Atomic measurements are not presentable
 - too insignificant (example: no. of successes per student)
 - too many values
- The decision-maker prefers aggregated measures, a priori
- But it must also be able to "zoom in" on certain measurements to observe the details
- Objectives of the presentation stage:
 - present the data in a user-friendly way
 - allow for interactive exploration
- This step requires a specialized tool
(during this course: SAP *Business Objects*)

Exploring a context

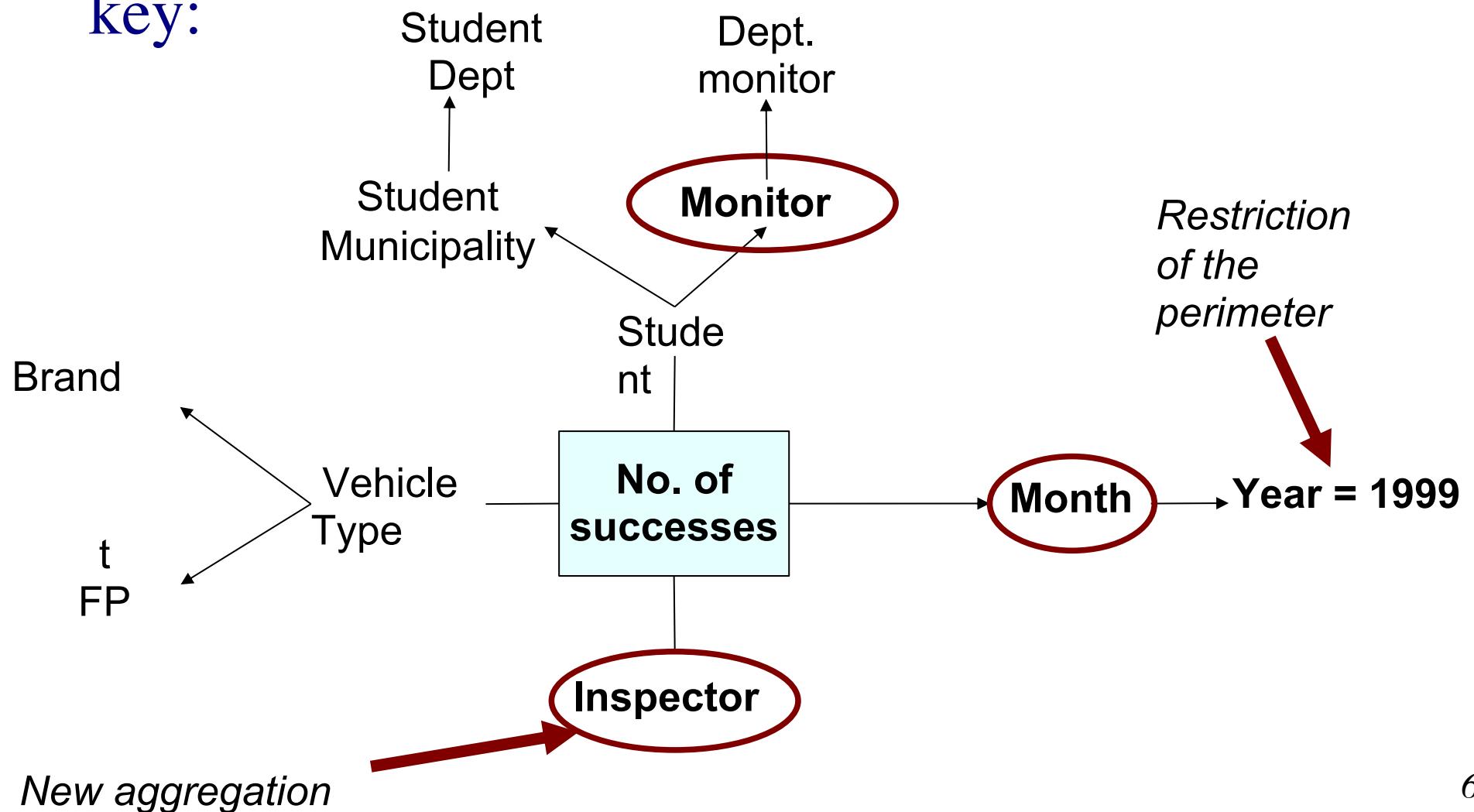

- Challenge: to show an intelligible subset of the cube, without hiding anything!
- The exploration consists in choosing :
 - the **level of aggregation** of each dimension
 - the **exploration perimeter**, by constraining the values of certain keys
 - the keys whose values are **displayed**
 - Example: *No. of successes per monitor and month in 1999 :*
 - the perimeter covers the measurements verifying *Year exam = 1999*
 - aggregation by monitor and month, for all types and inspectors
 - display: year, month, monitor, number of successes

Exploration tactics : tabular view

- The tabular view focuses on two dimensions of the cube:
 - neutralization of all dimensions (choice of ALL key), except two
 - choice of an aggregation level in each of these two dimensions
 - perimeter definition
 - other dimensions can appear, provided that the key values of several dimensions are combined on the same axis of the table

Example of exploration

- Query: Nb of successes by monitor and month in 1999



Resulting table : monitor * month/year

	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999
	3	4	5	6	7	8	9	10	11	12	
Maillet Sophie		0	2	0	2		1	1	1	1	1
Meursault Antoine			1							0	
Meyer Julie	0	0					1		2		
Moreau François	0			0				0			
Morel Gérard						0		0			

3 dimensional chart

- To understand the impact of the inspectors, we aggregate the measurements at the level of this key:

3-dimensional table (continued)

Two dimensions are represented on the same axis

		1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999
Maillet	Ildevert	3	4	5	6	7	9	10	11			
Sophie	Jacques						1		1			
Maillet	Imbert											
Sophie	Jacques											
Maillet	Imbert Julie		0	1	0	2		1				
Sophie				0								
Maillet	Irel											
Sophie	Jacques											
Meursault	Imbert Julie			1						0		
Antoine												
Moreau	Ildevert								0			
François	Jacques											
Moreau	Imbert					0						
François	Jacques											
Moreau	Imbert Julie	0										
François												

Thomsen's projection

- Principle: $N+1$ logical dimensions are projected onto a 3-dimensional window
- Logical dimensions: N key dimensions + 1 measurement dimension
- "Physical" dimensions of the window :
 - rows
 - columns
 - pages (tabs)
- Each physical dimension hosts 0, 1 or more logical dimensions

Example of projection

Logical dimensions

geography and

measurements

in rows

Logical time dimension

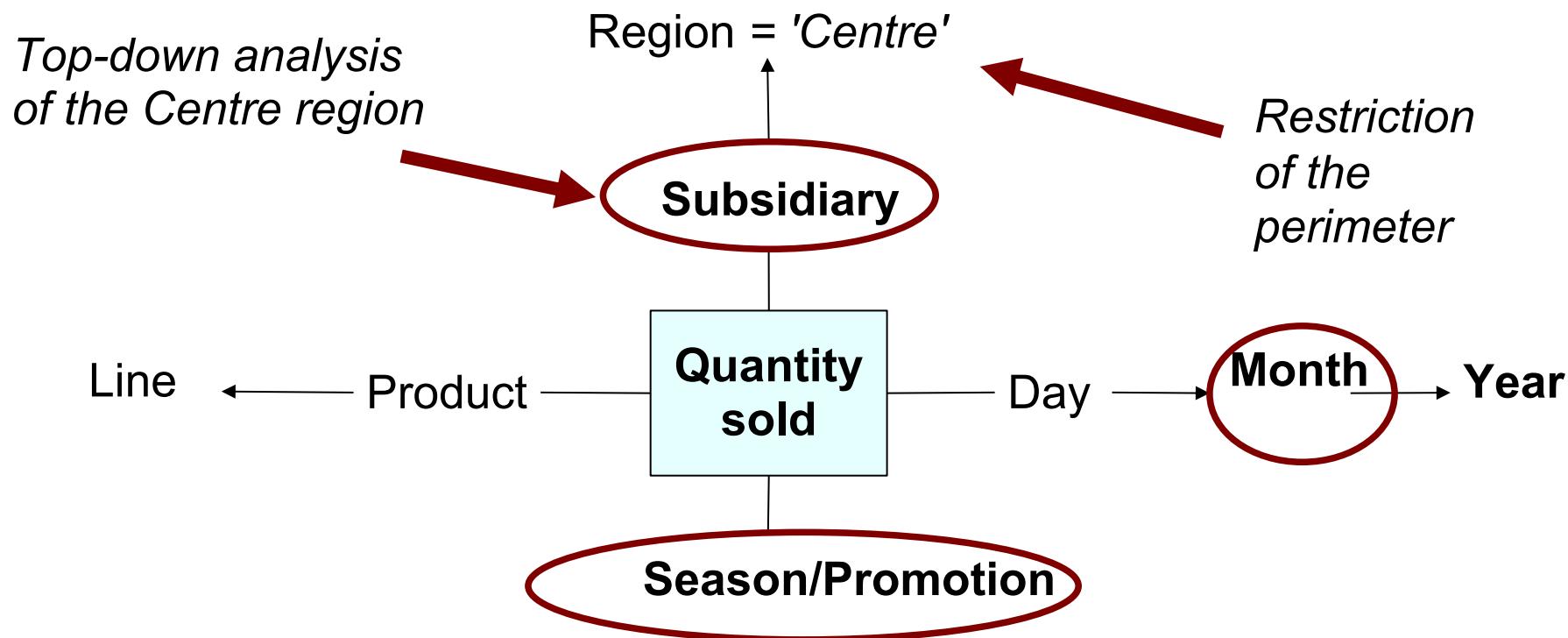
in columns

		1999				
		Jan	Fév	...	Nov	Déc
Centre	CA	81	88		90	101
	Qté	139	144		177	183
Est	CA	60	65		65	69
	Qté	181	183		205	190
Nord	CA	50	52		55	56
	Qté	92	90		44	89

Logical dimension

product *in pages*

home


garden

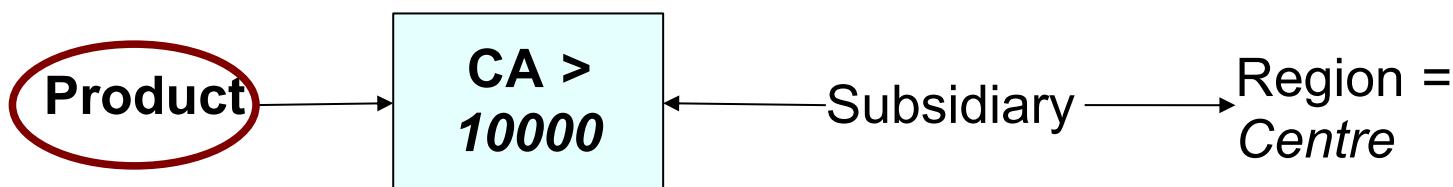
Navigation actions

- The user can "navigate" through the cube by incremental actions such as :
 - top-down analysis (or *drill-down*, or *roll-down*)
 - bottom-up analysis (or consolidation / drill-down / *drill-up* or *roll-up*)
 - lateral analysis
 - Filtering (or key selection, or *screening*)
 - projection on certain dimensions, or *slicing*
 - rotation, or *pivot*
 - merge

Top-down analysis

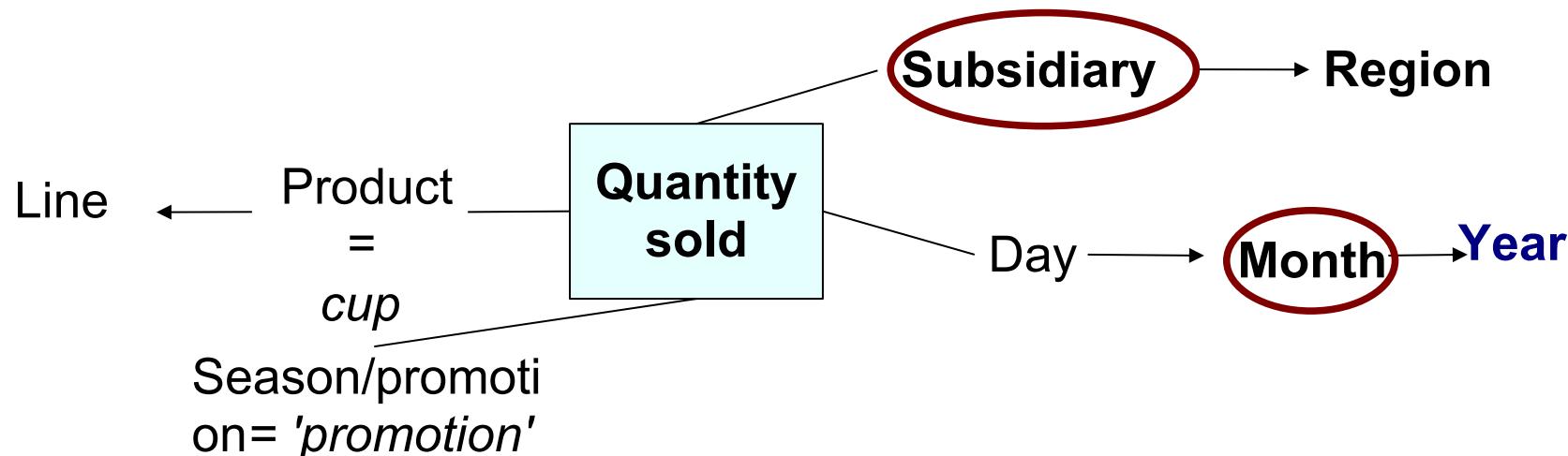
- This action consists of two elementary actions on one dimension:
 - scope is limited to one value of the aggregated key
 - aggregation on a lower level key

Top-down analysis : result


		1999			
		Jan	Fév	...	Nov
Filiale	Saison	33	39		65
	Promo	17	10		9
Filiale	Saison	20	20		12
	Promo	5	12		13
Filiale	Saison	28	29		13
	Promo	17	22		15
Total Centre	Saison	81	88		90
	Promo	39	44		37

Bottom-up / lateral analysis

- **Bottom-up analysis** = reverse of top-down analysis
- This action consists of two elementary actions on one dimension:
 - the aggregation level "goes up" to the next level
 - the constraint on the key at this level is removed
- **Lateral analysis**: the constraint is maintained, but the selection key value is changed
 - example: selection on *February* instead of *January*


Filtering

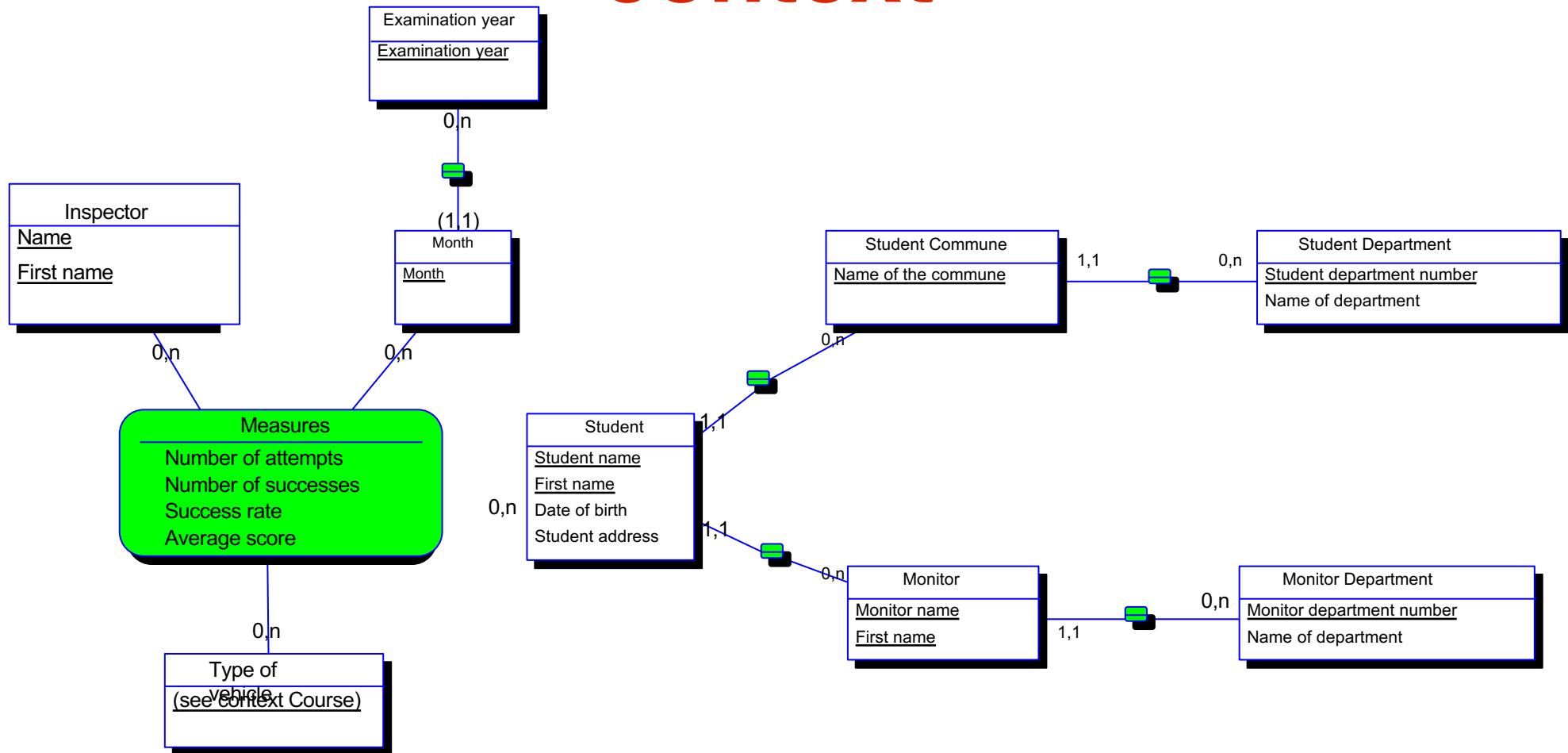
- Synonyms: *screening, key selection*
- This type of action concerns only the exploration perimeter
- More or less complex conditions are imposed on the keys and/or measures
- Information attributes may be involved
- Example: products from the Centre region with a turnover higher than 10000

Projection on N-M dimensions

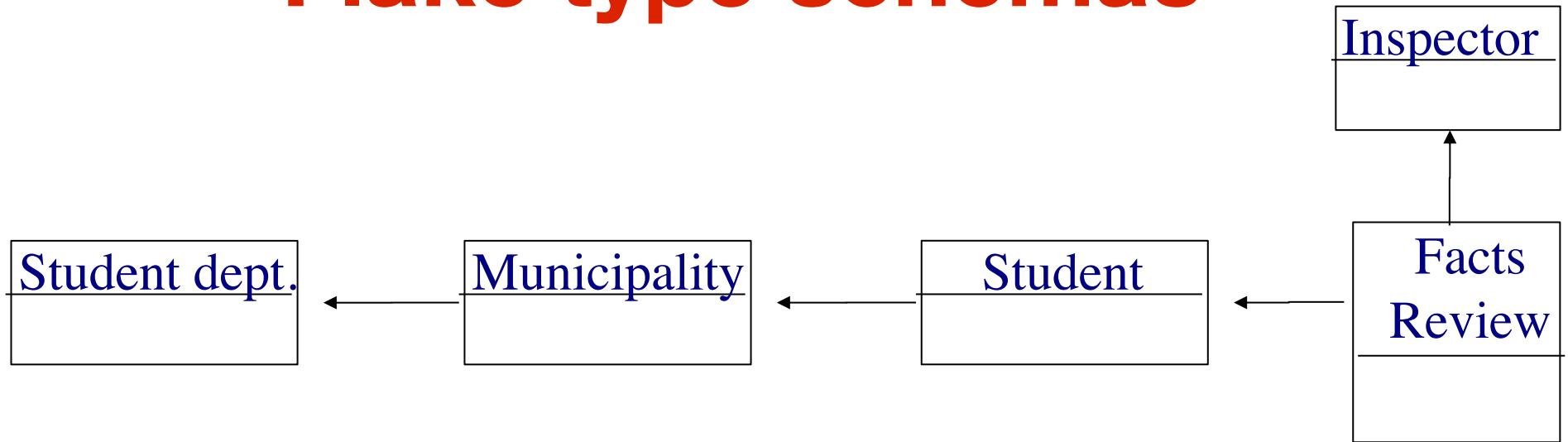
- In an N-dimensional context, we impose a condition on the keys of M dimensions
- These M dimensions are aggregated totally
- Result: a "cube slice" of N-M dimensions
 - example: details of sales of promotional cups ($N=4, M=2$)

Rotation / Merge

- **Rotation** = choosing another dimension on an axis
- Two possibilities:
 - moving a dimension already displayed.
Example: the *season/promotion* rows become sub-columns of the *month* columns
 - replacement on an axis of a displayed dimension by a non displayed dimension
Example: *Subsidiary* is replaced by *Product line*
- **Merge** = grouping of measures from different contexts. Requirement: have browsed each context to obtain compatible views

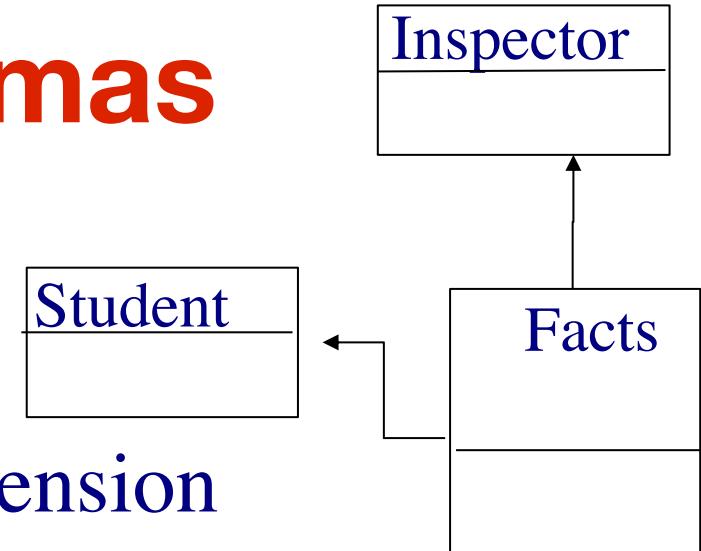

Step 3: Dissemination

- The MDB provides the multidimensional data
 - partial copy of the IB, with
 - development of basic measures
 - setting up dimensional keys
 - storage in native multidimensional or relational format
 - often confused with IB (data warehouse)
- The MDB is composed of *Data Marts*, structured by domains:
 - sets of contexts with common dimensions
 - Implementation very dependent on the presentation software


From the multidimensional CDM to relational schema

- R-OLAP technology (the only one seen here):
Database stored in *relational* format
- Each context is translated into a table called *fact table*. In general :
 - one column per elementary measure (not calculated)
 - one foreign key per dimension
 - no primary key
- At least one table per dimension:
 - sequential and digital primary key
 - one column per key or information attribute

MCD of the "examination" context


Flake type schemas

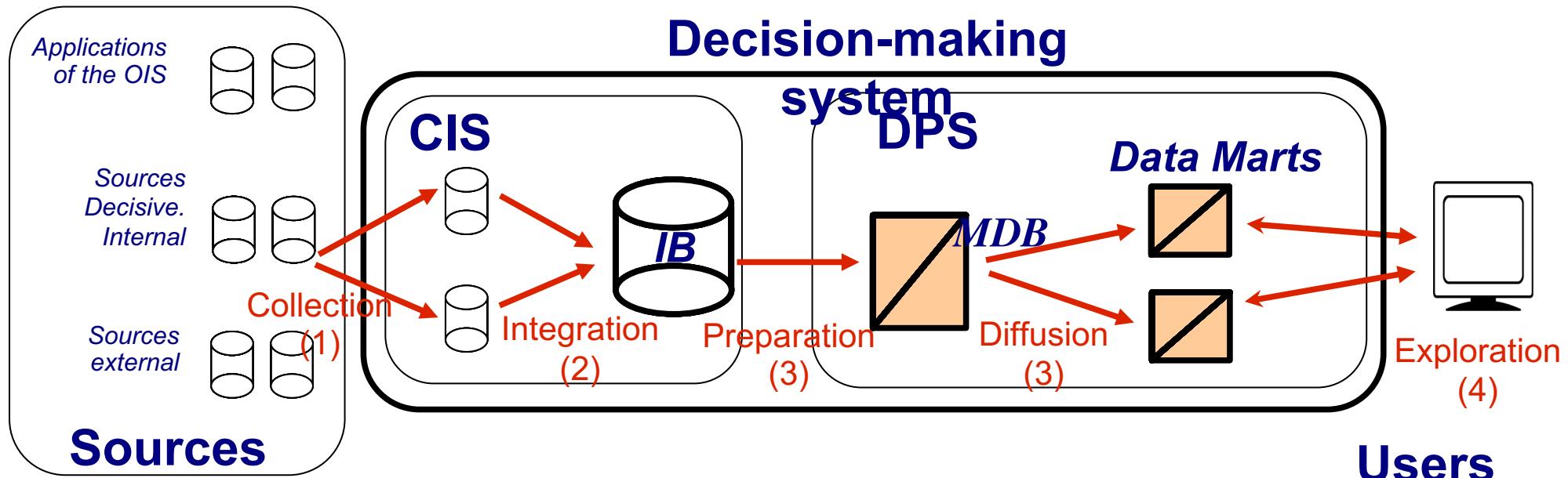
- *Classical translation of a CDM to LDM*
- *Flake* model: dimensions are normalized according to the 3NF
- No redundancy
- Limits : join cost for interactive exploration

star type schemas

- *Star* model: at most one denormalized table per dimension
- Denormalized: for a dimension, « shrink » all entities in one (the grain/seed)
- Advantage: the number of joins is minimal and moreover constant
- Disadvantage: the recopies of values increase the volume. But:
 - the dimensional tables occupy only 5 to 10% of the total volume
 - tables are generated from the IB, never modified: no update anomalies

Fact tables

- Principle: one row for any significant combination of measurements (non-zero)
- Aggregation by *sum, average, min, max*, etc.
- One column per measure, except for measures *by coverage* :
 - no row: measurement = 0
 - presence of row: measure = 1
 - aggregation by the *count* function
 - example: measures = (*no. of tickets sold, entrance fee*)
dimensions = (*Film, Day, Customer, Room*)


Special cases (1)

- **Degraded dimension:** no table!
 - no more need for a foreign key in the fact table
 - one column per key in the fact table
 - advantage: one join less
 - reserved for very small dimensions.
Examples: dimension *dates exam, date course*
- **Multiple fact tables** for the same context
 - same foreign keys
 - different numbers

Aggregate tables

- Dynamic aggregation is expensive: pre-computed aggregates can be used
- **Solution 1:** Individual aggregate tables
Example: Aggregates by *Region/Month/Product Family*.
Problem: one table per aggregation level
- **Solution 2:** Grouping of aggregates in the fact table
 - no change in the structure of the fact table
 - one additional row per pre-calculated aggregate
 - aggregation level indicator in each dimensional table

Architecture of the DIS

- Two subsystems :
 - **CIS = Collection (1) and Integration (2) System**
 - **DPS = Diffusion System (3) and Presentation System (4)**
- Interface between the two: the **Integration Base (IB)**
- **IB = the data warehouse** according to most authors!

The Integration base (IB)

- The Diffusion database is fed by the **Integration Database** (the proper DW)
- Need to distinguish between *IB* and *MDB* :
 - *Multidimensional Difusion database*
 - composed of *Data Marts* adapted to presentation tools
 - **native multidimensional** (M-OLAP) or **simulated** (R-OLAP)
 - data that can be consulted and sometimes modified by the end user
 - *Integration database*
 - unique, centralized and historical reference base
 - **relational** because it is incrementally enriched from data sources

Steps 1 and 2: feeding the IB

- Step 1
 - selective **collection of** "dirty" data from sources
 - **harmonization** in "clean" intermediate tables
- Step 2: **Integration** into IB tables
 - *Permanent* entities :
 - no deletions, only insertions
 - change of ownership: considered as a correction (old value lost because "false")
 - *Moving* Entities :
 - no deletion or modification
 - add occurrence for any change in the source

Step 0: Decision-making project approach

- Study of decision needs: identification of measures and dimensions (grain)
- Study of the existing system (OIS)
- *Conceptual* analysis
 - multidimensional model (Mutidim. CDM)
- *Technical* analysis
 - logical and physical CIS model (IB + other tables)
 - logical and physical models of the DPS (MDB, Data Marts)
 - processing analysis: collection, integration, aggregation, distribution

Glossary

- IDB: integration Database (FR-base d'intégration)
- BI: business intelligence (FR-le décisionnel)
- OLAP: on-line analytical processing
- ROLAP: OLAP based on a traditionnal RDBMS
- BO: SAP Business Object
- DW: Data Warehouse (FR-entrepôt de données)
- DIS: Decisional information systems (FR-système d'information décisionnel)